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A B S T R A C T   

Due to the complexity of predicting future earthquakes, machine learning algorithms have been used by several 
researchers to increase the Accuracy of the forecast. However, the concentration of previous studies has chiefly 
been on the temporal rather than spatial parameters. Additionally, the less correlated variables were typically 
eliminated in the feature analysis and did not enter the model. This study introduces and investigates the effect of 
spatial parameters on four ML algorithms’ performance for predicting the magnitude of future earthquakes in 
Iran as one of the most earthquake-prone countries in the world. We compared the performances of conventional 
methods of Support Vector Machine (SVM), Decision Tree (DT), and a Shallow Neural Network (SNN) with the 
contemporary Deep Neural Network (DNN) method for predicting the magnitude of the biggest upcoming 
earthquake in the next week. Information Gain analysis, Accuracy, Sensitivity, Positive Predictive Value, 
Negative Predictive Value, and Specificity measures were exploited to investigate the outcome of using a new 
parameter, called Fault Density, calculated using Kernel Density Estimation and Bivariate Moran’s I, on the 
performance of the earthquake prediction, in comparison to other commonly used parameters. We discussed the 
behavior of the four models while dealing with different combinations of parameters and different classes of 
earthquake magnitudes. The results showed promising performance of the proposed parameter for the earth
quakes of high magnitudes, especially using SVM and DNN models.   

1. Introduction 

Earthquake is a destructive natural disaster that occurs almost 
without any warning in advance. It inflicts plenty of casualties and 
financial loss to human societies. Besides, it can impose several envi
ronmental side effects such as surface fault rupture [1] and soil lique
fication [2] or initiates other types of disasters like tsunamis [3], 
landslide [4], and fires [5]. Due to the high potential of destruction and 
death [6,7] as well as the direct and indirect effects of earthquakes [8], 
researchers have been vigorously working on the idea of proposing 
different approaches for earthquake prediction [9–11]. Timely and 
reliable forecasting can provide the possibility to consider preventive 
measures for mitigating the devastating effects of powerful earthquakes. 
Besides, such a forecast would be able to increase the level of public 
preparedness. A successful forecast determines the geographical loca
tion, the time, and the magnitude of an earthquake [12]. Such pre
dictions can save many lives and vast amounts of resources. However, 
despite proposing various methods using different input parameters, 
such successful forecasts are rare amongst the past research [13]. 

Various methods, including mathematical modeling [14,15], hy
drological [16], ionospheric analysis [17], and even procedures based 
on the observation of the animal behaviors [18,19], have been proposed 
to predict earthquakes. In another direction, a class of methods falls in 
the ambit of extracting useful information from the pressure wave, P, 
measured by seismographs, to predict the magnitude of an upcoming 
earthquake, only a few seconds to the event [20–23]. This class of 
methods is useful for implementing early warning systems [24], which 
their effectiveness is highly dependent on the accurate detection of the P 
waves and the rejection of false-positive ground vibrations caused by 
local activities [25]. Most of the mentioned techniques depend on the 
occurrence of specific precursors [26]. Nevertheless, in practice, such 
precursors usually either occur without any subsequent seismic events 
or are hard to detect, and thus those methods do not typically lead to 
satisfactory results [27]. Therefore, researchers have suggested that new 
approaches need to be considered for earthquake forecasting [28]. 

Meanwhile, machine learning (ML) techniques have emerged as a 
potent tool with undeniable advantages in dealing with data-intensive, 
nonlinear, and complex problems. These methods are often data- 
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driven, non-parametric, and less constrained by inductive assumptions 
[29]. Several researchers have started applying ML algorithms to solve 
the earthquake prediction problem [30–35]. E.g. Ref. [30], presented a 
probabilistic neural network model that yielded good prediction accu
racies for a range of magnitudes between 4.5 and 6 [31]. also introduced 
a new scheme for the estimation of significant earthquake events based 
upon Radial Basis Function ANN, where the model was trained using 
leave-one-out cross-validation. In another study, researchers utilized 
two different quantitative association rules (QAR) and M5P to discover 
the temporal patterns of seismic data beneficial in earthquake prediction 
[33]. [35] examined the spatial-temporal variations of seismicity pa
rameters for the Qeshm earthquake in southern Iran. After calculating 
seismicity parameters and normalization, Principal Component Analysis 
(PCA) was applied to make the data ready for being fed into the model, 
which was comprised of Radial Basis Function (RBF) and ANFIS [32]. 
devised a methodology in which the validity of the seismicity indicators 
could be tested using Nearest Neighbors, Naïve Bayes, Support Vector 
Machines (SVM), Decision Tree (DT), and Artificial Neural Networks 
(ANN) algorithms. 

From a temporal standpoint, earthquake prediction is categorized 
into two general categories of forecast (months or years in advance) and 
short-term predictions (hours or days in advance). Earthquake fore
casting is very useful for identifying the seismic gap and portions of the 
plate boundaries that have not ruptured in a significant earthquake for a 
long time [13]. However, this study focuses on short-term forecasts, 
directly dealing with protecting human lives and social infrastructures 
[36]. Short-term prediction of earthquakes is considered a challenging 
problem [13,37,38] due to the complex nature of earthquake phenom
enon [39], the complexities of the Earth’s lithosphere and its crustal 
blocks-and-faults structure [40] so that no specific method is yet 
regarded as a reliable method for such predictions [13,41]. 

For short-term earthquake prediction, the effective seismic parame
ters utilized in previous studies are often the seven parameters of x1,x2,

x3,x4,x5,x6,and x7, introduced by Ref. [42]; expressing the seismic facts 
of Bath, Gutenberg–Richter and Omori/Otsu’s law and the nine pa
rameters of b,a,η, ​ ΔM,T,μ,C,dE1/2 and,Mmean, introduced by Ref. [43]; 
that represent the seismic potential of the ground. Besides, Depth, lati
tude, and longitude of the seismic events extracted directly from the 
catalog data were also considered as input variables in some studies [26, 
44]. Some research investigated the effective parameters for earthquake 
prediction [32,45]. However, these studies have primarily focused on 
the extent to which the dependent variables are affected by the inde
pendent variables, and in feature analysis, they sought to use the pa
rameters that were more correlated with the output variable. The less 
correlated parameters were often omitted in the feature analysis process. 
It is noteworthy that the input parameters’ influence on the results is 
profoundly affected by the capability of method for extracting useful 
information from the input parameters. Moreover, a review of the past 
research in the realm of earthquake prediction using machine learning 
methods reveals that most of these studies only consider temporal rather 
than spatial correlations between the dependent and independent vari
ables [27]. 

Many destructive earthquakes have occurred along active fault zones 
or in their proximity. This observation reinforces the hypothesis that 
future damaging earthquakes occur mostly along active faults or within 
the areas where the density of the active faults is rather high [46–48]. 
Thus, there is a need to devise a methodology that leverages fault 
location data, converts it to information, examines its usefulness as an 
input variable to predict future earthquakes, and evaluates its impact on 
the prediction accuracy. Hence, the main goal of this study is to intro
duce and investigate the role of a spatial parameter, called Fault Density 
(FD), on the Accuracy of short-term earthquake prediction models that 
work based on ML algorithms. In particular, the performance of three 
well-known ML algorithms of SVM, DT, and Shallow Neural Network 
with one hidden layer (SNN) are compared to those of the DNN (Deep 

Neural Network) algorithm for short-term prediction in a 
spatio-temporal setting. The proposed FD parameter is calculated by 
applying the Kernel Density Estimation (KDE) function on the active 
faults data, while the radius of the KDE is calculated through Bivariate 
Moran’s I [49] to account for spatial correlation. The models receive 
effective parameters proposed by previous research [42,43,50], along 
with FD and predict the magnitude of the largest earthquake over the 
next week. Information Gain analysis (IGA), Accuracy and Sensitivity 
measures were exploited to assess each input parameters’ explanatory 
power, including the proposed FD, as well as the performances of the 
models. 

Iran, as one of the most earthquake-prone countries in the world [51, 
52], was selected as the study area. The country has already experienced 
many large and destructive earthquakes such as Tabas (1978), Rudbar 
(1990), Bam (2003), and Varzaqan (2012), with the death toll of about 
126000 attributed to 14 earthquakes with magnitudes of 7.0 Richter and 
51 earthquakes of 6.0–6.9 Richter since 1900 [53–56]. Therefore, the 
need for accurate and reliable forecasting for mitigation measures is 
greatly sensed in the study area. 

The rest of the article is organized as follows. Section 2 summarizes 
the theory of the four machine learning algorithms used in this study. 
Section 3 describes the methodology. Results and discussion are pre
sented in section 4. Finally, section 5 concludes the study and proposes 
future works. 

2. Machine learning algorithms 

SVM is a supervised learning method based on statistical learning 
theory and the structural risk minimization principle [57]. As a binary 
classifier, SVM constructs optimal hyperplanes to separate the members 
of two classes while maximizing the distance between the closest sam
ples of the classes in the training data [58]. However, in most real-world 
cases, the problem is not linearly separable. To handle the nonlinear 
cases, a kernel maps the input data to a high dimensional space, known 
as feature space, where the data would supposedly be linearly separable. 
The training points that are closest to the optimal hyperplane are called 
support vectors [59]. The performance of SVM highly depends on the 
selection of a proper kernel and the regularization constant C. Linear, 
polynomial, RBF (a.k.a. Gaussian), and sigmoid are four widely applied 
SVM kernels in the literature [59,60]. 

DT is a hierarchical model made up of decision rules that recursively 
divides the independent variables into homogeneous regions [61,62]. 
The purpose of a DT is to find a set of decision rules so that they can be 
used to predict the output from a set of input parameters. During the 
training process, the DT strives to obtain the maximum amount of in
formation along with the minimum entropy generated in the tree sub
groups [63]. Initially, all data is aggregated in a root node, and then it is 
divided into subgroups with higher purity and homogeneity using 
parameter values. These subsets are called internal nodes [64]. Labels 
are assigned to leave (terminal) nodes by an allocation strategy like 
majority voting [65]. In this study, the C5.0 algorithm with a boosting 
approach introduced by Ref. [66] is used for short-term earthquake 
modeling to enhance the predictive ability of the C5.0 algorithm. The 
core idea of the boosting approach is to create multiple classifiers rather 
than just one. When a new case is to be classified, each classifier votes for 
its predicted class. The votes are counted afterward to determine the 
final class [67]. 

ANNs have been one of the most powerful machine learning methods 
for predicting and modeling [68]. ANNs can learn complicated and 
nonlinear relationships; they do not need prior assumptions about the 
distribution of input data; they have proved their feasibility in dealing 
with noisy and incomplete data [69,70]. MLP, as a feed-forward neural 
network, is a well-known ANN method that has been used by several 
researchers for earthquake prediction [42,71,72]. An MLP model is 
composed of at least three layers of input, hidden, and output. The 
neurons are fully connected, meaning that every node in one layer is 
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connected to every node in the next layer [73]. MLP networks can be 
built with an arbitrary number of layers. However, it has been proved 
[74–77] and tested [78,79] that a three-layered MLP network (one input 
layer, one hidden layer, and one output layer) can simulate any 
nonlinear function up to a desired degree of Accuracy. In this study, we 
refer to the MLP network with three layers of input, hidden, and output 
as Shallow Neural Network (SNN). 

DNN is a particular type of ANN with a deep structure of multiple 
hidden layers, attempting to model hierarchical representation beneath 
data and comprehend the patterns by stacking multiple layers of infor
mation processing modules in hierarchical architectures [80]. 
Increasing the number of hidden layers and hence adequate data 
transformations in deep neural network structures result in extracting 
the most appropriate hierarchical representation of the data [81]. In 
addition to their significant improvements in a variety of domains 
including image classification, object detection, and speech recognition 
[82], their generality, availability of open-source code and computer 
hardware for accelerating their process, mainly when the task at hand 
deals with abundant data, are amongst the reasons augmented the 
prominence of these models [83]. Different architectures of DNN have 
been proposed and used in different domains, e.g., Convolutional Neural 
Networks, Recurrent Neural Networks, and Long Short-Term Memory 
Neural Network. In this study, we used a deep neural network 
feed-forward architecture for earthquake prediction purposes. 

3. Methodology 

3.1. Case study 

The case study of this study is Iran (the longitude between 24.5 and 
40 and latitude between 43.5 and 64), a high land in the northern 
hemisphere, situated in the central part of the Alpine–Himalayan 
orogenic belt. The seismic activities of the Iranian plateau result from its 
position as a 1000-km-wide zone of compression between the colliding 
Arabian and Eurasian plates [84]. Fig. 1 shows the abundance of 
earthquakes in Iran during 1973 and 2019. 

3.2. Data 

After collecting and storing raw catalog data, from January 1973 to 
July 2019, from USGS1 and IIEES,2 the data were integrated, and the 
duplicate rows were identified and removed. Amongst the columns in 
the catalog data, only latitude, longitude, and Depth were directly taken 
as input variables for the prediction. In order to deal with more critical 
earthquakes, catalog data were filtered based on their magnitude so that 
events with magnitudes less than 3 Richter were eliminated. Such a 
filtering approach has been adopted priorly by previous studies [85,86]. 

Fig. 1 shows the location of the earthquake events after filtering. 
Events with larger magnitudes are shown in red. As can be seen, seismic 
events ranging from 3 to 7.7 Richter are covering the whole country. 
Fig. 2 also shows the frequency of seismic events by year, where we are 
witnessing a significant increase in the number of incidents in recent 
years. 

After data collection, a 1 × 1 degree grid was constructed in the 
study area. In order to analyze the regions that are more prone to 
earthquakes, this study only considered pixels that contain at least 500 
seismic events (Criterion 1: C1), and there is at least one event with a 
magnitude of greater than 5 Richter (Criterion 2: C2). 

There were only three pixels that satisfied C1 and C2. These pixels 
were selected as the input pixels for the analysis. The locations of these 
pixels and some information about the earthquake incidences in each 
pixel are presented in Fig. 1 and Table 1, respectively. 

3.3. Dependent and independent variables 

The input data need to be converted into well-structured records so 
that we can feed them to the prediction models. Each record of data is 
composed of a dependent variable and several independent variables. 

The output (dependent) variable represents the maximum magni
tude of the next seismic event occurring in the next seven days. In this 
study, the problem of earthquake prediction is considered as a classifi
cation problem. The magnitude of the most massive earthquake 
happening in the next week is predicted as one of the four classes 
specified in Table 2. 

Notably, previous studies have shown that if the classification of the 
dependent variable results in an imbalanced dataset, the performance of 
machine learning-based models for earthquake prediction might 
diminish significantly [87]. Therefore, we used the frequency distribu
tion of the dependent variable to specify the intervals so that the class 
boundaries were determined by the Natural Breaks classification 
method [88]. 

The independent variables are composed of 19 parameters borrowed 
from previous studies, including 16 seismic parameters, latitude, 
longitude, and Depth accompanied by the proposed FD parameter. 
Overall, they constitute our 20 input variables that all had been 
normalized (between 0 and 1) before being used by the models. Table 3 
lists the sixteen seismic input parameters proposed along with their 
definition. 

The first parameter, named b value, is related to the famous Guten
berg Richter geophysical law [89]. [43] proposed this parameter and 
used the least-squares method to calculate it. However, due to the lack of 
robustness in dealing with infrequent earthquakes [42], suggested that b 
value should be calculated through maximum likelihood via Equation 
(1). 

b= log(e)
/

(1/n)
∑n− 1

j=0
Mi− j − M0

(1) 

In Equation (1), n is the number of events considered before the event 
ei, Mi− j is the magnitude of ei, e in the numerator is the Euler’s number 
(approximately 2.718), and the cutoff magnitude is also indicated by M0. 
In this study n was set to fifty, as suggested by previous studies [30,42, 
45,90]. Having the parameter b calculated, the other parameters were 
calculated based on the description in Table 3. 

In addition to the above-mentioned parameters, this study proposes a 
new parameter called FD to be used in short-term earthquake prediction 
procedures. The initial assumption is that short distances to the active 
faults can increase the chance of large earthquakes in the area [46]. To 
convey the effect of the surrounding faults, we calculated the FD by 
applying Kernel Density Estimation (KDE) analysis [91,92] on the faults 
data layer. The cardinal parameter of KDE analysis is the search radius. 
The proper radius of the KDE analysis is the distance that maximizes the 
correlation between the dependent variable and the neighborhood 
faults. To determine this distance, Bivariate Moran’s I [49] was 
employed as proposed by Ref. [93]. The distance that maximizes Mor
an’s I index between the independent variable (distance from the faults) 
and the dependent variable (the magnitude of the largest earthquake in 
the following week) is considered the proper distance of the KDE anal
ysis. The KDE was calculated for the study area, and its value in each cell 
was considered as the FD parameter. 

3.4. Prediction model 

Fig. 3 demonstrates the overall process of the proposed short-term 
earthquake prediction procedure. The ultimate goal was to estimate 
the dependent variable, which classifies the magnitude of the most massive 
earthquake happening in the next seven days. The process started by 
receiving the data related to the three selected pixels. At first, the in
dependent variables were calculated for each record of the data. Then, 
the data was divided into three chunks of train, validation, and test. Fifty 

1 U.S. Geological Survey.  
2 International Institute of Earthquake Engineering and Seismicity. 
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Fig. 1. Location and magnitude of earthquakes, greater than 3 Richter during 1973–2019, with grids and the selected earthquake-prone areas.  

Fig. 2. Earthquake frequency histogram per year, 1973–2019.  

Table 1 
Statistical Information of the events within the 3 selected pixels.  

Pixel (Row - Column) Number of Events Average of Magnitude Variance of Magnitude Standard Deviation of Magnitude Max Magnitude Min Magnitude 

(11–8) 526 4.140569 0.374002 0.611557 6.2 3 
(8–4) 528 3.994318 0.422207 0.649774 6.2 3 
(12–8) 510 4.039216 0.319441 0.565191 6.4 3  
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percent of the data was devoted to training, twenty-five percent to 
validating, and the last twenty-five percent to testing. Utilization of 
Natural Breaks for determining the class boundaries and shuffling of the 
records resulted in the uniform distribution of the classes in all three 
training, validation, and testing subsets. In other words, all classes were 
uniformly represented in training, validation, and testing datasets. 

The four ML algorithms of SNN, SVM, DT, and DNN were trained and 
calibrated using the train and validation data chunks. We used the 

trained models afterward to estimate the class of the earthquakes 
happening in the next seven days for the test data. Finally, using the 
predicted and expected classes, the confusion matrix was calculated for 
the test dataset. 

The calibration process encompasses determining the best combi
nation of the hyper-parameters of each method. As for both SNN and 
DNN neural networks, the models were calibrated to achieve high 
generalization while mitigating overfitting. We used the Weight Decay 
parameter [94] for the SNN model and Dropout [95] for the DNN model 
to lessen the effect of overfitting. The number of layers and nodes, 
dropout rate, activation function, and weight decay were tuned for DNN 
and SNN, respectively. To achieve ideal DNN and SNN models with high 
performance, which neither overfit nor underfit, the models were 
repeatedly modified, trained, and validated on the validation data. We 
iteratively changed different hyperparameters of the models, including 
the number of layers, number of units per layer, learning rate, dropouts, 
and regularization. The combination that resulted in the best model 
performances were selected as the optimal hyperparameters. It is worth 
mentioning that some researchers have used metaheuristics approaches, 
e.g., particle swarm optimization [96], genetic algorithm [97], coro
navirus optimization [98], and artificial bee colony [99], to tackle the 
problem of hyperparameter tuning. 

Regarding SVM, the RBF kernel [59] exposed the best performance 
in the calibration process. The C parameter and the kernel width 
(gamma parameter) were calculated by iterating over ranges of possible 
values. For DT, the Trials parameter, controlling the number of boosting 
iterations [67], was optimized in the calibration process. 

The calibration process was conducted using 4-fold-cross validation. 
Specifically, after separating 25% of the data for the test, the rest was 
divided into four equal parts. As demonstrated in Fig. 4, the training and 
validation were performed in four iterations so that in each iteration, 
three parts were used for training, and the remaining one part was used 
for validation. The final validation score was obtained and calculated 
from the average of the four validation scores. 

Ultimately, after training and determining the optimal hyper- 
parameters for the four models based on SNN, SVM, DT, and DNN 
using the validation score, each trained model predicted the test data 
that had not been fed to the models during training and validation. 

Table 2 
The boundaries of output classes.  

Range (Dependent Variable) Class Number of Events 

3–3.7 1 125 
3.7–4.5 2 345 
4.5–5.1 3 294 
5.1–6.4 4 235  

Table 3 
Seismic parameters, adopted from Refs. [42,43]].  

# Feature Description 

1 b value Gutenberg–Richter (GR) law’s b value 
2 X1 Increment of b between the events i and i-4 
3 X2 Increment of b between the events i-4 and i-8 
4 X3 Increment of b between the events i-8 and i-12 
5 X4 Increment of b between the events i-12 and i-16 
6 X5 Increment of b between the events i-16 and i-20 
7 X6 The maximum magnitude from the events recorded during the last 

week (OU’s law) 
8 X7 Probability of events with magnitude larger or equal to 6.0, 

calculated as P(Ms ≥ 6) = e− 3b /log(e) = 10− 3b  

9 a Gutenberg–Richter law’s a value 
10 η  Sum of the mean square deviation from the regression line based on 

GR’s law 
11 ΔM  Difference between the largest observed magnitude and largest 

expected based on GR’s law 
12 T  Elapsed time which is the period between the last n events, 

calculated from T = tn − t1  

13 μ  Average time between major seismic events (also known as 
characteristic events) amongst the last n events 

14 C  Coefficient of variation 
15 dE1/2  Rate of the square root of seismic energy 

16 Mmean  Mean magnitude of the last n events  

Fig. 3. Overall process.  
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3.5. Evaluation 

IGA, Accuracy, and Sensitivity measures have been exploited in this 
study to evaluate the outputs. Firstly, IGA was used to 1) measure the 
explanatory power of each input parameter and 2) to gauge the degree 
to which each machine learning algorithm could take advantage of these 
parameters. Based on IGA, the attribute that reduces the entropy by the 
largest amount is considered the most significant attribute for the clas
sification [100]. The information gain of an attribute A over the dataset 
S is defined as Equation (2) [101]. 

Gain(S,A)=Entropy(S) −
∑

v ε values(A)

Sv

S
Entropy(Sv) (2) 

In Equation (2), Entropy(S) is the entropy of the entire dataset, Sv is 
the subset of S for which the attribute A has the value v and Entropy(Sv) is 
the entropy of this subset. More precisely, the entropy of S, as a measure 
of impurity, is calculated via Equation (3) [101]. 

Entropy(S) =
∑c

i=1
− pilog2pi (3)  

where pi is the probability that a particular instance belongs to the class i 
and c is the number of classes. 

In addition to IGA, after running the models, the observation and 
expected values resulted from the test data were used to form the 
confusion matrix. Using the confusion matrix, the following parameters 
were calculated.  

• Accuracy, as the number of events that the model has successfully 
predicted (Equation (4)).  

• Sensitivity, as the indicator of how correctly the model has predicted 
the earthquakes that happened (positive class) (Equation (5)). 

Accuracy=
TP + TN

TP + FN + TN + FP
(4)  

Sensitivity=
TP

TP + FN
(5) 

Furthermore, to understand the DNN model’s behavior, we calcu
lated its Specificity, Positive Predictive Value (PPV), and Negative Pre
dictive Value (NPV).  

• Specificity represents the rate of actual negative predictions of 
models (Equation (6)).  

• PPV (Equation (7)) represents the ratio of actual positives (true 
predictions) out of all the generated earthquake predictions (positive 
predictions).  

• NPV (Equation (8)) denotes the ratio of actual negatives amongst all 
the negative predictions. 

Specificity=
TN

TN + FP
(6)  

PPV =
TP

TP + FP
(7)  

NPV =
TN

TN + FN
(8) 

In Equations (4)–(8), TP, TN, FP, and FN are defined based on the 
confusion table as follows [102]:  

• TP (true positive): An earthquake occurred and predicted by the 
model.  

• FP (false positive): No earthquake occurred but falsely predicted by 
the model.  

• TN (true negative): No earthquake occurred, and the model made no 
prediction.  

• FN (false negative): An earthquake occurred, but the model was 
unable to predict it. 

Fig. 4. 4-fold cross validation technique.  

Table 4 
Information Gain Values for the input parameters.  

ID Variables Attribute Importance 

1 X6 0.250 
2 T 0.138 
3 Latitude 0.088 
4 B Value 0.079 
5 X7 0.079 
6 A Value 0.079 
7 Mmean  0.079 
8 Etta 0.078 
9 C 0.077 
10 longitude 0.072 
11 dE1/2 0.068 
12 M Deficit 0.048 
13 FD 0.047 
14 μ 0.042 
15 depth 0.037 
16–20 X1, X2, X3, X4, X5 0  
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4. Results and discussion 

This section presents and discusses the result of the proposed short- 
term earthquake prediction models. The outputs of IGA, presented in 
Table 4, revealed that the FD variable, introduced in this study, has a 
higher value in predicting earthquakes than some other features, 
including X1, X2, X3, X4, X5, and Depth. 

To further investigate the FD variable’s role along with Depth, 
recognized by IGA as the spatial variables of moderate importance, we 
ran the four ML algorithms with different combinations of input pa
rameters presented in Table 5. It is worth noting that in contrast to the 
widespread practice of excluding variables with low information gain 
value, we did not remove the variables X1, X2, X3, X4, and X5 from the 
input vector. The rationale behind not removing those variables pro
ceeds from the idea that a variable’s usefulness is proportionally 
dependent on the ability of the underlying model. A potent model would 
take advantage of the little amount of useful information coming from 
less significant variables and provide better predictions. 

Table 6 shows the optimal hyper-parameters for the three ML tech
niques of SNN, SVM, and DT, while the structure of the optimal DNN 
together with the output shape and the number of parameters is shown 
in Table 7. It is worth mentioning that to find the ideal DNN model, we 
tested several architectures with different hyperparameters, and the 
model with the highest validation accuracy was selected as the best 
model. Some of the tested structures and the corresponding validation 
accuracies during 500 epochs of training were presented in Table 8 and 
Fig. 5. Finally, the DNN structure with 1 input layer, 6 hidden layers, and 
1 output layer was selected as the best DNN structure. The output layer 
had 4 nodes along with the SoftMax activation function to predict the 4 
classes (Table 7). 

The train and test accuracy obtained by different models on the three 
parameter-sets are presented in Table 9 and Table 10. As shown in 
Table 9, the best overall test accuracy was obtained by DT, followed by 
DNN, SVM, and SNN, for the three parameter-sets. Considering the two 
parameters of Depth and FD, it seems that the two models of SNN and 
SVM were not able to use the latent information carried by these pa
rameters. However, the two models based on DNN and DT were more 
successful in exploiting these two parameters. Meanwhile, DNN was the 
most successful ML algorithm in terms of utilizing the information in the 
FD and Depth parameters. Such an improvement by DNN could be 
rooted back to the deep neural structure of DNN that can extract useful 
information from less correlated independent input parameters. 

To examine the performance of models from various aspects, in 
addition to Accuracy, the Sensitivity measure was calculated. Accuracy 
was chosen as a general metric, assessing the overall performance of the 
models. In contrast, we went into more detail using Sensitivity to un
derstand better how each model performed for each class. In other 
words, Sensitivity signifies the capabilities of the models to correctly 
sense the earthquakes that occurred while Accuracy summarizes the 
overall performance of the classifiers. Sensitivities obtained for different 
classes are displayed in Table 11. Low values of the Sensitivity measure 
for class one (earthquakes between 3 and 3.7 Richter) and class two 
(earthquakes between 3.7 and 4.5) means that almost every model 
performed weakly in estimating these classes compared to the third and 
fourth classes. A reason for the deterioration of the sensitivities when it 

comes to class one and two compared to class three and four, for all 
models, would be a great deal of noise in the low magnitude data 
enfolding these classes. It is worth mentioning that some studies [102, 
103] recommended that the cutoff magnitude based on the 
Gutenberg-Richter law should be calculated beforehand and then all the 
events that come below the calculated cutoff magnitude should be 
filtered out. The reasoning behind such a suggestion is to ensure that 
incomplete and misleading information is not considered in the model 
[102]. However, this way of calculating and applying the cutoff 
magnitude resulted in losing the dataset’s main chunk, which was not 
appropriate for running the ML models. To examine the effect of cutoff 
magnitude on the performance, we ran the DNN model with three cutoff 
magnitudes of 3, 4, and 5 Richter and calculated the Accuracy. As shown 
in Fig. 6, the Accuracy of DNN deteriorates as we increase the cutoff 
magnitude. Another contributing factor could be the lower number of 
instances recorded for the first class (Table 2), which might have exac
erbated the situation even further. Perhaps, that is why the results of the 
predictions for the second class are generally better than class one for all 
models. 

The sensitivities obtained for classes three and four have been higher 
compared to the first two classes. A closer look reveals that these classes’ 
highest sensitivities (three and four) came about while the models were 
using the second parameter-set. The underlying reason could stem from 
the idea that higher magnitudes are more correlated with the FD 
parameter since high-magnitude earthquakes are more likely to occur in 
areas that are closer to active faults. 

Although in terms of overall Accuracy (Table 9) DT performed better 
than the other methods, it did not score the highest Sensitivity. The best 
methods for predicting classes 1, 2, 3, and 4 were SNN on parameter-set 
3, SVM on parameter-set 1, DNN on parameter-set 2, and SVM on 

Table 5 
Examined parameter-sets.   

16 seismicity parameters (Table 3), Longitude and 
Latitude 

FD Depth 

Parameter-set 
1 

*   

Parameter-set 
2 

* *  

Parameter-set 
3 

* * *  

Table 6 
Optimal parameters of the shallow methods.   

SNN SVM DT 

Parameter-Set1 Activation: Logistic 
Structure: 1 hidden, 9 neurons 
Decay: 1e-04 
Total parameters: 211 

Kernel: RBF 
Gamma: 0.23 
Cost: 16 

Trials: 40 

Parameter-Set2 Activation: Logistic 
Structure: 1 hidden, 9 neurons 
Decay: 4e-04 
Total parameters: 220 

Kernel: RBF 
Gamma: 0.3 
Cost: 16 

Trials: 30 

Parameter-Set3 Activation: Logistic 
Structure: 1 hidden, 9 neurons 
Decay: 0 
Total parameters: 229 

Kernel: RBF 
Gamma: 0.14 
Cost: 256 

Trials: 40  

Table 7 
Optimal structure of the DNN for parameter-set 3.  

Layer (Type) Output Shape Param # 

Dense (Units: 256, Activation: Tanh) (None, 256) 5376 
Dropout (0.4) (None, 256) 0 
Dense (Units: 512, Activation: ReLU) (None, 512) 131584 
Dropout (0.4) (None, 512) 0 
Dense (Units: 512, Activation: ReLU) (None, 512) 262656 
Dropout (0.4) (None, 512) 0 
Dense (Units: 256, Activation: Tanh) (None, 256) 131328 
Dropout (0.4) (None, 256) 0 
Dense (Units: 256, Activation: ReLU) (None, 256) 65792 
Dropout (0.4) (None, 256) 0 
Dense (Units: 128, Activation: ReLU) (None, 128) 32896 
Dropout (0.4) (None, 128) 0 
Dense (Units: 4, Activation: SoftMax) (None, 4) 516 

Total params: 630,148. 
Trainable params: 630,148. 
Optimizer: RMSprop. 
Loss function: Categorical Crossentropy 
Metric: Accuracy. 
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parameter-set 2. A closer look at the results (Table 11) discloses that the 
best prediction of classes 1, 3, and 4 occurred in the models using the FD 
parameter, which indicates the suitability and usefulness of the 
parameter, especially for predicting earthquakes of larger magnitudes. 
Classes 3 and 4 can be predicted with the likelihood of more than 95% 
using the new FD parameter. 

In some circumstances, other methods outperformed DNN. DNN is 
the model with the highest complexity amongst the implemented ones. 
Thus, in some cases, its lower accuracy and sensitivity may be due to its 
higher parametrization, as has already been seen before, in a study done 
by Ref. [30]. 

Remarkably, a recent literature review [104] suggested that neural 
network models with shallow structures can compete with DNNs in 
terms of their predictive power for earthquake prediction because of the 

structured, tabular nature of catalog data and the limited number of 
calculated features. Some other studies also noted such an observation 
about the predictive power of SNNs [105,106]. Decision ensembles like 
Boosting and Random Forest, on the other hand, have attracted some 
attention and grown in popularity [107], where researchers compared 
their performances with different machine learning algorithms [30, 
108]. Meanwhile, SVM has shown higher generalization ability for 
earthquake forecasting [109,110]. Having known the superiority of 
these four models, we assessed their prediction powers per class in the 
study area. Our results showed that when the goal is to use a general 
classifier to forecast earthquakes entailing both low and high magni
tudes, DT would be a proper choice. However, considering the sensi
tivity analysis of the third and fourth classes, DNN and SVM could sense 
and detect moderate and high magnitude earthquakes better than other 
methods. Despite the network size and the considerable number of 

Table 8 
The structures for the DNN architectures.  

Blue architecture Green architecture Black architecture Yellow architecture Purple architecture Orange architecture Red architecture (Best) 

L1:Dense 256 L1:Dense 256 L1:Dense 256 L1:Dense 256 L1:Dense 512 L1:Dense 256 L1:Dense 256 
L2: Dropout L2:Dense 128 L2: Dropout L2: Dropout L2:Dense 512 L2: Dropout L2: Dropout 
L3: Dense 128 L3:Dense 4 L3:Dense 256 L3:Dense 512 L3:Dense 512 L3:Dense 512 L3:Dense 512 
L4: Dropout  L4: Dropout L4: Dropout L4:Dense 256 L4: Dropout L4: Dropout 
L5:Dense 4  L5:Dense 256 L5: Dense 512 L5:Dense 256 L5:Dense 512 L5:Dense 512   

L6: Dropout L6: Dropout L6:Dense 4 L6: Dropout L6: Dropout   
L7:Dense 4 L7:Dense 256  L7:Dense 512 L7:Dense 256    

L8: Dropout  L8: Dropout L8: Dropout    
L9: Dense 256  L9:Dense 256 L9:Dense 256    
L10: Dropout  L10: Dropout L10: Dropout    
L11:Dense 4  L11:Dense 256 L11:Dense 128      

L12: Dropout L12: Dropout      
L13:Dense 4 L13:Dense 4  

Fig. 5. Validation accuracies for different DNN architectures.  

Table 9 
Test data Accuracy.   

SNN SVM DT DNN 

Parameter-Set 1 70.4% 78% 82% 78% 
Parameter-Set 2 70.0% 78% 80% 78.4% 
Parameter-Set 3 61.2% 74.8% 81.2% 79.6%  

Table 10 
Train data Accuracy.   

SNN SVM DT DNN 

Parameter-Set 1 76.5% 99.7% 100% 93.4% 
Parameter-Set 2 79.4% 99.8% 100% 92.1% 
Parameter-Set 3 78.2% 100% 100% 93.2%  

Table 11 
Sensitivity.   

Class1 Class2 Class3 Class4 

Parameter-Set1/SNN 32% 72.2% 68.6% 85.9% 
Parameter-Set2/SNN 20.0% 81.1% 61.1% 82.4% 
Parameter-Set3/SNN 76% 42.5% 68.6% 78.9% 
Parameter-Set1/SVM 66.6% 81.7% 68.1% 93.7% 
Parameter-Set2/SVM 66.6% 76.4% 72.8% 97.7% 
Parameter-Set3/SVM 59% 77.3% 67% 88.4% 
Parameter-Set1/DT 60% 78.2% 88% 91.2% 
Parameter-Set2/DT 60% 76.2% 86.5% 87.7% 
Parameter-Set3/DT 52% 79.2% 86.5% 91.2% 
Parameter-Set1/DNN 56% 67.3% 88% 94.7% 
Parameter-Set2/DNN 48% 69.3% 95.5% 87.7% 
Parameter-Set3/DNN 56% 74.2% 88% 89.4%  
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parameters needed to be trained for the DNN models, the results 
demonstrated that these complex models were the most successful in 
utilizing the information underneath the FD and Depth parameters. 
Moreover, DNNs outperformed other methods in predicting moderate 
magnitudes, though the best model in predicting low magnitude earth
quakes was SNN. This behavior of SNN was expected since its structure 
is relatively simple, and the relationships between the input variables 
and the tremors of higher magnitudes are quite complex. In fact, the 
introduction of multiple hidden layers in DNN provides the possibility to 
learn features at different levels of abstraction [111]. 

From the disaster management organization’s perspective, an 
earthquake prediction model should generate a few false alarms because 
false alarms can result in a big panic and financial loss [112]. Based on 
that, Specificity, PPV, and NPV were calculated per class for the DNN 
model (Table 12). 

As shown in Table 12, the PPV value of 88% for the fourth class 
predicted by the DNN model is quite encouraging. There seems to be a 
trade-off between Specificity and NPV, indicating that when the Speci
ficity is high, it is more likely that the classifier predicts false positives. 

5. Conclusion 

In this study, conventional machine learning algorithms of SNN, 
SVM, and DT, as well as the contemporary DNN method, were exploited 
to predict earthquakes in Iran. In addition to the commonly used seismic 
parameters described in the previous research, a new parameter named 
FD was also introduced, which ameliorated the Accuracy of the deep 
learning earthquake prediction model. The results showed satisfactory 
performances of DNN and SVM in predicting the classes of high mag
nitudes. However, the performance of DT was more promising in coping 
with events of both high and low magnitudes. 

In the future, we will examine the usability and suitability of other 
deep neural network architectures, e.g., Convolutional and Recurrent 
Neural Networks, for earthquake prediction and compare their perfor
mance with the four algorithms of this study. Furthermore, the effect of 
the FD parameter on the performance of those methods will be 
evaluated. 

Funding 

No founding used for this study. 

Availability of data and material 

The datasets are published by USGS and IIEES and publicly available 
through the following links.  

• https://earthquake.usgs.gov/earthquakes/search  
• http://www.iiees.ac.ir/fa/eqcatalog/ 

CRediT authorship contribution statement 

Mohsen Yousefzadeh: Conceptualization, Methodology, Investiga
tion, Programming, Writing – original draft, Writing – review & editing. 
Seyyed Ahmad Hosseini: Supervision, Writing – original draft, Writing 
– review & editing. Mahdi Farnaghi: Supervision, Conceptualization, 
Methodology, Critical commenting, Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no conflict of interest. 

References 

[1] Bray JD. Developing mitigation measures for the hazards associated with 
earthquake surface fault rupture. In: Workshop on seismic fault-induced 
failures—possible remedies for damage to urban facilities. University of Tokyo 
Press; 2001. p. 55–79. 
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